Topic 4 -Separable first order ODES

Def: A first order ODE
is called separable if it
is of the form

$$N(y) \cdot y' = M(x)$$

 $y's on one side x is on other side$
 $Ex: y^2 \frac{dy}{dx} = x-5$ A $DDE \ order 1$
 $N(y) \cdot y'$ $M(x)$
 $Ex: y' = \frac{x^2}{y}$ A $Order 1$
which becomes
 $y \cdot y' = x^2$
 $N(y) \cdot dx$ $N(x)$

Formal notation Informal notation

$$N(y) \cdot y' = M(x)$$

 $f = M(x)$
 $V(y) \cdot \frac{dy}{dx} = M(x)$
 $f = M(x)$
 $f = M(x)$
 $f = M(x)$
 $f = M(x) dx$
 $f = M(x) dx$
 $\int N(y) dy = M(x) dx$
 $\int N(y) dy = M(x) dx$
 $\int N(y) dy = \int M(x) dx$
 $\int N(y) dy = \int M(x) dx$
 $\int N(y) dy = \int M(x) dx$
 $Now integrate$
Here $u = y$.

EX: Solve the initial-value problem

$$y^{2} \frac{dy}{dx} = x - 5$$

$$y(o) = 1$$
Furthermore give an interval where the
Solution exists.
We have that

$$y^{2} \frac{dy}{dx} = x - 5$$

$$y^{2} \frac{dy}{dx} = (x - 5) \frac{dx}{dx}$$

$$\int y^{2} \frac{dy}{dy} = \int (x - 5) \frac{dx}{dx}$$

$$\frac{y^{3}}{3} = \frac{x^{2}}{2} - 5x + C \quad (*)$$
Now let's plug in $y(o) = 1$ before
Solving for y .
Means: when $x = 0$, we have

Plugging in
$$x=0, y=1$$
 into the
equation (*) above we get:

$$\frac{1^{3}}{3} = \frac{0^{2}}{2} - 5(0) + C$$

$$\frac{1}{3} = C$$
Plugging this back into (*) gives

$$\frac{y^{3}}{3} = \frac{x^{2}}{2} - 5x + \frac{1}{3}$$
Solving for y we get:

$$y^{3} = \frac{3}{2}x^{2} - 15x + 1$$

$$y = \sqrt[3]{\frac{3}{2}x^{2} - 15x + 1}$$

$$I = (-\infty, \infty)$$
 is where this function is
valid, ie for $-\infty < x < \infty$

Exi Solue
$$\frac{dy}{dx} = \frac{-x}{y}$$
 subject to $y(y) = 3$.
First solve the ODE:
 $\frac{dy}{dx} = \frac{-x}{y}$
 $y dy = -x dx$
 $\int y dy = -\int x dx$
 $\frac{y^2}{2} = -\frac{x^2}{2} + C$
Now plug in $y(y) = 3$ to get:
means: plug in $x = 4, y = 3$
 $\frac{3^2}{2} = -\frac{(4^2)}{2} + C$
 $\frac{9}{2} = -\frac{16}{2} + C$
 $\frac{2^2}{2} = C$
Thus,
 $\frac{y^2}{2} = -\frac{x^2}{2} + \frac{25}{2}$

$$y^{2} = -x^{2} + 25$$

$$y = \pm \sqrt{-x^{2} + 25}$$
Do we pick $\pm \text{ or } - ?$
We need uur function to satisfy $y(4) = 3$.
To get $3 = \pm \sqrt{-x^{2} + 25}$ we have
to pick the plus sign.
So, $y = \sqrt{-x^{2} + 25} = 4$
Where is this defined?
We need $-x^{2} + 25 \ge 0$.
Or $25 \ge x^{2}$
So, $-5 \le x \le 5$.
Answer:
 $y = \sqrt{-x^{2} + 25}$
 $T = [-5,5] = 4$
Menai: $-5 \le x \le 5$